Альтернативная энергетика

Как определить максимальную мощность тока

Полезная мощность обладает наибольшим значением в случае, когда нагрузочное сопротивление — R равняется сопротивлению внутри источника — r.

R = r.

Pmax=E2 /4r

Где: E — электродвижущая сила (ЭДС) источника.

Можно рассчитать максимальную токовую нагрузку, которую будет использовать электрическое устройство, исходя из номинальной нагрузки и входного напряжения переменного тока. Номинальная энергонагрузка будет указана в технических характеристиках устройства, руководстве или на маркировке.

Так, например, если номинальное энергопотребление электрического устройства (P) составляет 12 Вт, максимальное потребление тока при различных напряжениях U= 120 В переменной сети будет:

I = 12/120 = 0,100 А или 100 мА

В переменной сети 220 В:

I = 12 / 220= 0,055A или 55 мА

Распределения понятия «энергия»

Энергетика людей – это только общее понятие многих составляющих физического и психологического состояния человека. Так называемые каналы человека могут отвечать за разные события, эмоции, мысли.И для того чтобы научиться в совершенстве управлять своей энергетикой, необходимо для начала разобраться во всех ее каналах, которые существуют в человеке.

Различные виды энергии принято называть телами, которые связаны между собой упомянутыми выше каналами. В своей практике йоги всегда пользуются знаниями об эзотерических телах, которые помогают им выходить на новый, нефизический уровень.

Помимо знакомого нам физического тела, существует эфирное, ментальное, астральное, каузальное, буддхическое и атманическое. Все они существуют в каждом человеке, просто у одних какое-либо из тел развито лучше, у других – хуже. Но всегда можно развить и научиться управлять своими телами, которые предназначены для решения многих жизненных проблем.

Теплоснабжение

ТЭЦ в Финляндии.

Основная статья: Теплоснабжение

Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами. Такие условия могут быть реализованы в большинстве стран мира только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80—90 °C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:

  • источника тепла, например котельной;
  • тепловой сети, например из трубопроводов горячей воды или пара;
  • теплоприёмника, например батареи водяного отопления.

Централизованное теплоснабжение

Новосибирская ТЭЦ-5.

Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:

  • Теплоэлектроцентрали (ТЭЦ);
  • Котельные, которые делятся на:
    • Водогрейные;
    • Паровые.

Децентрализованное теплоснабжение

Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:

  • Малые котельные;
  • Электрическое, которое делится на:
    • Прямое;
    • Аккумуляционное;
    • Теплонасосное;
  • Печное.

Тепловые сети

Основная статья: Тепловая сеть

Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.

От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей.

Электроэнергетика

Основная статья: Электроэнергетика России

Крупнейшая в России тепловая электростанция — Сургутская ГРЭС-2 обеспечивает электроэнергией важнейший для России нефтегазовый промысел в Западной Сибири, сжигает ценное нефтехимическое сырьё и автомобильное топливо — Нефтяной газ

Значение электроэнергетики в экономике России, так же как и её общественной жизни трудно переоценить — это основа всей современной жизни.

По важному показателю — выработке на одного жителя — в 2005 году страна находилась приблизительно на одном уровне с такими энергоимпортирующими государствами как Германия и Дания, имеющими меньшие транспортные потери и затраты на отопление. Однако после спада в 90-х с 1998 года потребление постоянно растёт, в частности в 2007 году выработка всеми станциями единой энергосистемы составила 997,3 млрд кВт·ч (1 082 млрд кВт·ч в 1990 году).. Производство электроэнергии в 2017 году составило 1,091 трлн кВт·ч, что на 0,1% выше уровня 2016 года

Производство электроэнергии в 2017 году составило 1,091 трлн кВт·ч, что на 0,1% выше уровня 2016 года.

АЭС за этот период нарастили производство на 3,3%, до 203 млрд кВт·ч. Тепловые станции снизили производство на 0,8% – до 700 млрд кВт·ч. Гидроэлектростанции увеличили выработку на 0,3%, до 187 млрд кВт·ч.

В структуре потребления выделяется промышленность — 36 %, ТЭК — 18 %, жилой сектор — 15 % (несколько заместивший в 90-х провал потребления в промышленности), значительны потери в сетях, достигающие 11,5 %. По регионам структура резко отличается — от высокой доли ТЭК в западной Сибири и энергоёмкой промышленности в Сибирской системе, до высокой доли жилого сектора в густонаселённых регионах европейской части.

Магистральная ЛЭП 500 кВ Волжская ГЭС — Москва

В 2003 году начат процесс реформирования «ЕЭС России». Основными вехами реформирования электроэнергетики стали завершение формирования новых субъектов рынка, переход к новым правилам функционирования оптового и розничных рынков электроэнергии, принятие решения об ускорении темпов либерализации, размещение на фондовом рынке акций генерирующих компаний. Осуществлена государственная регистрация семи оптовых генерирующих компаний (ОГК) и 14 территориальных генерирующих компаний (ТГК). В отдельную Федеральную сетевую компанию (ФСК ЕЭС), контролируемую государством, выделена основная часть магистральных и распределительных сетей.

Железнодорожный транспорт — крупный и особенно важный для хозяйства страны потребитель энергии

Кроме того действуют и более независимые или изолированные энергокомпании «Янтарьэнерго», «Якутскэнерго», «Дальневосточная энергетическая компания», «Татэнерго», «Башкирэнерго», «Иркутскэнерго» и «Новосибирскэнерго».

В 2008 году владельцем акций межрегиональных сетевых компаний по распределению энергетических ресурсов стал «Холдинг МРСК».

Крупными игроками российской электроэнергетики с конца 2007 года стали германская компания E.ON, теперь контролирующая один из крупнейших энергоактивов — ОГК-4, итальянская ENEL теперь ключевой акционер ОГК-5. С 2008 года финский концерн Fortum контролирует бывшую ТГК-10.

Техническое развитие классической электроэнергетики России связывается введением в энергосистему более эффективных и маневренных парогазовых установок в том числе и в составе теплоцентралей.

Государственная политика

В 2009 году в России вступил в силу федеральный закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», целью которого является стимулирование энергосбережения и повышения энерго-эффективности.

Тело буддхическое

Это наши ценности. То, ради чего мы живем, что нас волнует. Но не стоит путать буддхическое тело с атманическим. Первое, в отличие от второго, может направлять человека на свершения каких-либо дел, помогает отличить истинные ценности от ложных.

Допустим, вы потеряли интерес к какому-нибудь делу, выполняете поставленные задачи не на совесть – тогда энергия буддхического тела перестает поступать.

Чтобы не терять силы, необходимо заниматься только любимым делом, которое приносит вам удовольствие, и не идти на поводу у моды, тенденций, просьб.

Человек с сильной энергетикой буддхического тела обязательно добьется большого успеха и станет первоклассным мастером своего дела. Не теряйтесь среди множества проектов, сосредоточьтесь на одном занятии, и тогда вы станете работать продуктивнее.

Основы сохранения и превращения

Из основ физики известно, что суммарная сила любого объекта, независимо от времени и места его пребывания, всегда остается величиной постоянной, преобразуются лишь ее постоянные составляющие (Еп) и (Ек).

Переход потенциальной энергии в кинетическую и обратно происходит при определенных условиях.

Например, если предмет не перемещается, то его кинетическая энергия равна нулю, в его состоянии будет присутствовать только потенциальная составляющая.

И наоборот, чему равна потенциальная энергия объекта, например, когда он находится на поверхности Земли (h=0)? Конечно, она нулевая, а Е тела будет состоять только из ее составляющей Ек.

Но потенциальная энергия – это мощность движения. Стоит только системе приподняться на какую- то высоту, после чего его Еп сразу начнет увеличиваться, а Ек на такую величину, соответственно, уменьшаться. Эта закономерность просматривается в вышеуказанных формулах (1) и (2).

Для наглядности приведем пример с камнем либо мячом, которые подбрасывают. В процессе полета каждый из них обладает и как потенциальной, так и кинетической составляющей. Если одна увеличивается, то другая на такую же величину уменьшается.

Полет предметов вверх продолжается лишь до тех пор, пока хватит запаса и сил у составляющей движения Ек. Как только она иссякла, начинается падение.

А вот чему равна потенциальная энергия предметов в самой верхней точке, догадаться нетрудно, она максимальная.

При их падении происходит все наоборот. При касании с землей уровень кинетической энергии равен максимуму.

Действие этого закона наблюдается не только в обычной жизни, но и в научных теориях. Кратко об одной из них.

Так как между многочисленными частицами идеального газа отсутствует какое-либо взаимодействие, то потенциальная составляющая описываемого явления молекул постоянно нулевая. Значит, вся внутренняя сила частиц идеального газа определяется, как средняя кинетическая, и рассчитывается по приведенной выше формуле (1).

Внимание! В наше время на письменных столах можно увидеть сувенир, называемый «маятником Ньютона». Этот прибор прекрасно демонстрирует процесс преобразования

Если крайний шарик отвести в сторону, а затем его отпустить, он после столкновения передает свой энергетический заряд следующему шарику, а тот своему соседу.

Виды энергии в физике

Кинетическая и потенциальная энергии, формулы

ЭнеÑгиÑ: опÑеделение, видÑ, на коÑоÑÑе она подÑазделÑеÑÑÑ

СÑÑÑ ÑнеÑгии ÑоÑÑÐ¾Ð¸Ñ Ð² ÑвойÑÑве накапливаÑÑÑÑ Ð¸ пеÑеÑодиÑÑ Ð¸Ð· одного ÑоÑÑоÑÐ½Ð¸Ñ Ð² дÑÑгое, на ÑÑом оÑновÑваÑÑÑÑ Ð²Ñе ÑеловеÑеÑкие изобÑеÑÐµÐ½Ð¸Ñ Ð¸ оÑкÑÑÑиÑ. ЭнеÑÐ³Ð¸Ñ Ð¿Ð¾Ð´ÑазделÑеÑÑÑ Ð½Ð° поÑенÑиалÑнÑÑ Ð¸ кинеÑиÑеÑкÑÑ. ÐÑе веÑеÑÑва во ÐÑеленной обладаÑÑ Ñвоей ÑнеÑгией. ÐÑли деÑжаÑÑ ÐºÐ°Ð¼ÐµÐ½Ñ Ð² ÑÑке, он Ð¸Ð¼ÐµÐµÑ ÑÐ²Ð¾Ñ Ð¿Ð¾ÑенÑиалÑнÑÑ ÑнеÑгиÑ, Ñо еÑÑÑ ÑнеÑÐ³Ð¸Ñ Ð¿Ð¾ÐºÐ¾Ñ, но как ÑолÑко ÐºÐ°Ð¼ÐµÐ½Ñ Ð¾ÑпÑÑÑиÑÑ, поÑенÑиалÑÐ½Ð°Ñ ÑнеÑÐ³Ð¸Ñ Ð¿ÐµÑеÑÐ¾Ð´Ð¸Ñ Ð² дÑÑгой вид ÑнеÑгии – кинеÑиÑеÑкÑÑ, Ñо еÑÑÑ Ð² ÑнеÑÐ³Ð¸Ñ Ð´Ð²Ð¸Ð¶ÐµÐ½Ð¸Ñ. Ðожно ÑаÑÑмоÑÑеÑÑ Ð¿ÑÐ¸Ð¼ÐµÑ Ð¿ÑевÑаÑÐµÐ½Ð¸Ñ ÑÐ³Ð»Ñ Ð² ÑвеÑ. ÐÑи ÑгоÑании некоÑоÑого колиÑеÑÑва ÑÐ³Ð»Ñ Ð¿Ð¾ÑенÑиалÑÐ½Ð°Ñ ÑолнеÑÐ½Ð°Ñ ÑнеÑгиÑ, коÑоÑÐ°Ñ Ð² нем накопилаÑÑ, пÑевÑаÑаеÑÑÑ Ð² ÑеплоÑÑ. ÐÑÑÐ¾ÐºÐ°Ñ ÑемпеÑаÑÑÑа, в ÑÐ²Ð¾Ñ Ð¾ÑеÑедÑ, заÑÑавлÑÐµÑ Ð²Ð¾Ð´Ñ Ð¸ÑпаÑÑÑÑÑÑ. ÐинеÑиÑеÑÐºÐ°Ñ ÑнеÑÐ³Ð¸Ñ Ð´Ð²Ð¸Ð¶ÐµÐ½Ð¸Ñ Ð¿Ð°Ñов пеÑедаеÑÑÑ Ð½Ð° ÑоÑÐ¾Ñ ÑÑÑбинÑ, пÑÐ¸Ð²Ð¾Ð´Ñ ÐµÐµ в движение. ЭÑа ÑнеÑÐ³Ð¸Ñ Ð² генеÑаÑоÑе пÑевÑаÑаеÑÑÑ Ð² ÑлекÑÑиÑеÑкÑÑ, коÑоÑÐ°Ñ Ð¿ÐµÑедаеÑÑÑ Ð¿Ð¾ ÑлекÑÑопÑоводам к лампоÑке. ÐалÑÑе ÑпиÑÐ°Ð»Ñ Ð»Ð°Ð¼Ð¿Ð¾Ñки нагÑеваеÑÑÑ Ð¸ наÑÐ¸Ð½Ð°ÐµÑ Ð½Ð°ÐºÐ°Ð»ÑÑÑÑÑ, ÑнеÑÐ³Ð¸Ñ Ð¿ÑевÑаÑаеÑÑÑ Ð² ÑепловÑÑ. ЧаÑÑÑ Ð½Ð°ÐºÐ°Ð»ÐµÐ½Ð½Ð¾Ð¹ ÑпиÑали в вакÑÑме излÑÑÐ°ÐµÑ ÑвеÑовÑÑ ÑнеÑгиÑ, в лампоÑке загоÑаеÑÑÑ ÑвеÑ. ÐÐ¸Ð´Ñ ÑнеÑгий могÑÑ Ð¿Ð¾ÑÑоÑнно менÑÑÑÑÑ, ÑÑанÑÑоÑмиÑÑÑÑÑ Ð´ÑÑг в дÑÑга.

Энергетическое топливо

Основная статья: Топливо

Газовый факел в Таиланде.

Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.

Органическое топливо

В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65 %, из которых 39 % приходились на уголь, 16 % на природный газ, 9 % на жидкое топливо(2000 г.). В 2010 году по данным BP доля ископаемого органического топлива 87 %, в том числе: нефть 33,6 %, уголь 29,6 % газ 23,8 %.Tо же по данным «Renewable21» 80,6 %, не считая традиционной биомассы 8,5 %.

Газообразное

Естественным топливом является природный газ, искусственным:

  • Генераторный газ;
  • Коксовый газ;
  • Доменный газ;
  • Продукты перегонки нефти;
  • Газ подземной газификации;
  • Биогаз;
  • Синтез-газ.

Жидкое

Естественным топливом является нефть, искусственным называют продукты его перегонки:

  • Бензин;
  • Керосин;
  • Соляровое масло;
  • Мазут.

Твёрдое

Естественным топливом являются:

  • Ископаемое топливо:
    • Торф;
    • Бурый уголь;
    • Каменный уголь;
    • Антрацит;
    • Горючий сланец;
  • Растительное топливо:
    • Дрова;
    • Древесные отходы;
    • Топливные брикеты;
    • Топливные гранулы.

Искусственным твёрдым топливом являются:

  • Древесный уголь;
  • Кокс и полукокс;
  • Углебрикеты;
  • Отходы углеобогащения.

Ядерное топливо

Основная статья: Ядерное топливо

В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана, который добывают:

  • В шахтах (Франция, Нигер, ЮАР);
  • В открытых карьерах (Австралия, Намибия);
  • Способом подземного выщелачивания (Казахстан, США, Канада, Россия).

Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90 % побочного обеднённого урана направляется на хранение, а 10 % обогащается до нескольких процентов (3—5 % для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки, которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки.

Технология

Топливный цикл

Основная статья: Ядерный топливный цикл

Ядерная энергетика основана на использовании ядерного топлива, совокупность промышленных процессов которого составляют топливный ядерный цикл. Хотя существуют различные типы топливных циклов, зависящие как от типа реактора, так и от характеристик конечной стадии цикла, в целом у него существуют общие этапы.

  1. Добыча урановой руды.
  2. Измельчение урановой руды
  3. Отделение диоксида урана, т. н. жёлтого хека, от отходов, тоже радиоактивных, идущих в отвал.
  4. Преобразование диоксида урана в газообразный гексафторид урана.
  5. Обогащение урана — процесс повышения концентрации урана-235, производится на специальных заводах по разделению изотопов.
  6. Обратное превращение гексафторида урана в диоксид урана в виде топливных таблеток.
  7. Изготовление из таблеток тепловыделяющих элементов (сокр. твэл), которые в скомпонованном виде вводятся в активную зону ядерного реактора АЭС.
  8. Извлечение отработанного топлива.
  9. Охлаждение отработанного топлива.
  10. Захоронение отработанного топлива в специальном хранилище.

В ходе эксплуатации в процессах технического обслуживания удаляются образующиеся низкорадиоактивные отходы. С окончанием срока службы производится вывод из эксплуатации самого реактора, демонтаж сопровождается дезактивацией и удалением в отходы деталей реактора.

Ядерный реактор

Основная статья: Ядерный реактор

Ядерный реактор — устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции деления, которая всегда сопровождается выделением энергии.

Первый ядерный реактор построен и запущен в декабре 1942 года в США под руководством Э. Ферми. Первым реактором, построенным за пределами США, стал ZEEP, запущенный в Канаде 5 сентября 1945 года. В Европе первым ядерным реактором стала установка Ф-1, заработавшая 25 декабря 1946 года в Москве под руководством И. В. Курчатова. К 1978 году в мире работало уже около сотни ядерных реакторов различных типов.

Существуют разные типы реакторов, основные отличия в них обусловлены используемым топливом и теплоносителем, применяемым для поддержания нужной температуры активной зоны, и замедлителем, используемым для снижения скорости нейтронов, которые выделяются в результате распада ядер, для поддержания нужной скорости цепной реакции.

  1. Наиболее распространенным типом является легководный реактор, использующий в качестве топлива обогащённый уран, в нём в качестве и теплоносителя, и замедлителя используется обычная вода, т. н. «легкая». У него есть две основные разновидности:
    1. кипящий реактор, где пар, вращающий турбины, образуется непосредственно в активной зоне
    2. водо-водяной энергетический реактор, где пар образуется в контуре, связанном с активной зоной теплообменниками и парогенераторами.
  2. Газоохлаждаемый ядерный реактор с графитовым замедлителем получил широкое распространение благодаря возможности эффективно вырабатывать оружейный плутоний и возможности использовать необогащённый уран.
  3. В тяжеловодном реакторе в качестве и теплоносителя, и замедлителя используется тяжелая вода, а топливом является необогащённый уран, используется в основном в Канаде, имеющей собственные месторождения урановых руд.

Формула кинетической энергии

Для расчета кинетической энергии тел используется уравнение:

Это означает, что кинетическая энергия Ec равна массе тела m, умноженной на квадрат скорости v, делённые на 2.

Мы можем сделать вывод, что чем больше масса, тем больше энергия, и что энергия пропорциональна скорости, умноженной на себя.

Кинетическая энергия не является вектором. Это означает, что если вы бросаете шар со скоростью 5 м / с, шар будет иметь одинаковую кинетическую энергию, независимо от того, бросаете ли вы его влево или вправо или вверх.

Кинетическая энергия зависит от массы и скорости.


Гоночные машины спроектированы с наименьшей массой для улучшения характеристик.

Кинетическая энергия зависит от массы и скорости тела. Это означает, что чем больше или быстрее объект, тем больше энергии он производит.

Примером вышесказанного может быть следующее: грузовик больше, чем автомобиль; Если оба едут с одинаковой скоростью и врезаются в стену, урон, нанесенный грузовиком, будет больше. В этом случае грузовик обладает большей кинетической энергией.

А теперь представьте: две одинаковые машины едут, одна со скоростью 50 км / ч, а другая со скоростью 100 км / ч. Чем выше скорость, тем серьезнее авария.

Таким образом, кинетическая энергия зависит от квадрата скорости. Это означает, что когда скорость объекта удваивается, его кинетическая энергия увеличивается в четыре раза.

Автомобиль, движущийся со скоростью 60 км / ч, имеет в четыре раза больше кинетической энергии, чем автомобиль, движущийся со скоростью 30 км / ч, и, следовательно, в четыре раза больший потенциал разрушения в случае аварии.

Энергетические системы

Канада. Массивы опор линий электропередачи уходят далеко за горизонт.

Энергетическая система (энергосистема) — в общем смысле совокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения, угольной промышленности, ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов.

Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой. В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по
линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико—экономические преимущества:

  • существенное снижение стоимости электро- и теплоэнергии;
  • значительное повышение надёжности электро- и теплоснабжения потребителей;
  • повышение экономичности работы различных типов электростанций;
  • снижение необходимой резервной мощности электростанций.

Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы.

Сильная энергетика человека

1. Вы умеете глубоко сочувствовать другим людям

Часто человека с сильной энергетикой можно видеть там, где кто-то обижен или находится в расстроенных чувствах. Энергочувствительные люди зачастую являются первыми “получателями” информации о чужой проблеме. При этом пострадавшему всегда хочется подержать за руку такого человека, обнять его и поплакаться ему.

Энергочувствительные люди очень остро чувствуют эмоции других людей (а иногда и физическую боль), поэтому они легко понимают и сопереживают страдающим.

2. Эмоциональные горки

Наличие острого чувства вибрационной энергии часто означает, что когда человек ощущает вокруг себя “высокие” энергии, он находится на эмоциональном подъёме и наоборот. Пусть у вас наготове будут несколько вариантов действий на случай эмоционального спада.

3. Зависимость

Будучи чувствительным к энергии, такой человек ощущает намного больше, чем другие люди. Чтобы спастись от чувства низкой вибрационной энергии, часто такие люди могут использовать алкоголь или какие-то другие расслабляющие средства, чтобы уменьшить силу ощущений от отрицательной энергии. 

Эти люди могут быть склонны и к другим видам пристрастий, таким как еда, азартные игры или шоппинг.

Как научиться чувствовать энергию другого человека

Чувствовать энергетику человека не так уж и сложно, как это может показаться на первый взгляд. Порой мы, и сами того не замечая и не понимая, можем в малознакомом человеке распознать некоторые черты его характера. Он может понравиться или не понравиться нам с первого взгляда. Энергетика другого человека передается нам через незамкнутые собственные энергетические каналы. Необязательно даже дотрагиваться до собеседника, достаточно просто взглянуть на него и понять, каковы его намерения и чувства.

К примеру, вам сегодня нагрубили в общественном транспорте, вы едете злой и угрюмый на работу. А там к вам приходит злой начальник, который утром поссорился с женой. Когда вы раздражены, ваши каналы открыты, а энергетические тела уязвимы для разного рода воздействий. Ваш начальник будет вам передавать свою негативную энергию, тем самым только усугубляя ваше самочувствие. Если такое будет происходить часто, то в скором времени вам не избежать проблем со здоровьем. Постарайтесь абстрагироваться от проблем дома и на улице, когда вы находитесь на работе. Но и не стоит, находясь дома, вспоминать все рабочие неурядицы.

Будет лучше всего, если вы научитесь справлять с проблемой, как только она возникла. Пусть у вас и не получится избежать грубости в общественном транспорте, но вы можете поменять свое отношение к этой грубости. Тогда ваши защитные каналы будут работать без перебоев и вы будете защищены от воздействия негативной энергии других людей.

Попытайтесь не раздражаться и не грубить в ответ. Возможно, вам сначала будет тяжело с этим справляться, но результат не заставит себя ждать. Никакая мелкая неприятность не сможет испортить вам настроение, ваше здоровье будет в порядке, на работе вы будете справляться с делами быстро и легко, а уставать будете меньше.

Научившись управлять своей энергетикой, вы лучше начнете понимать других людей. На улице, на работе и дома, в кругу семьи, вы будете чувствовать себя комфортно.

Мощность электрооборудования

Во всех паспортных данных на электрооборудование указывают не только его активную нагрузку, но и коэффициент мощности, который является очень важным параметром, в сетях переменного тока AC и определяет, насколько эффективно электроэнергия используется нагрузкой.

Косинус фи

Это рациональное число от −1 до 1, и никогда не равняется единице. Коэффициент мощности системы зависит от типа нагрузки: C, L или R. Первые две отрицательно влияет на PF = cosφ системы. Его большое значение приводит к увеличению тока, потребляемого оборудованием.

PF определяется как отношение реальной активной нагрузки к полной. Его также можно определить, зная по косинусу фазового сдвига между U и I в AC-цепи. Улучшение PF направлено на оптимальное использование электроэнергии, сокращение на электроэнергию и снижение потерь в сетях. Силовые трансформаторы не зависят от коэффициента мощности. Если он близок к единице, для того же номинального значения КВА трансформатора, к нему может быть подключена большая нагрузка. Большинство силовых нагрузок являются индуктивными и заставляют ток отставать от напряжения.

Дополнительная информация! Чтобы преодолеть сдвиг, адаптировано несколько методов коррекции коэффициента PF, помогающих нейтрализовать этот запаздывающий разрыв. Наиболее распространенным методом коррекции коэффициента PF является использование статических конденсаторов параллельно нагрузке. Они подают опережающий ток в систему, тем самым сокращая отставание. Конденсаторные батареи подключены параллельно к индуктивным нагрузкам. Измерить PF можно фазометром — измерительный прибор, определяющий угол сдвига фаз.

Главными параметрами электроприборов считаются: U, I и P. Потребляемую мощность всех устройств абонента учитывают при расчете электропроводки жилого помещения. В противном случае, при включении в сеть большого количества устройств, наступит перегрузка сети. Электропроводка не выдержит ток от электротехнических агрегатов, что приведет к плавлению изоляции, короткого замыкания в сети и воспламенению проводов.

https://youtube.com/watch?v=b_XmddCQOxs

Энергетика человека

Как мы можем видеть, сильная энергетика – это обоюдоострый меч. Концентрация на вибрационной энергии позволяет глубже понять Вселенную, но с другой стороны, это также может привести к некоторой повышенной стимуляции и вызвать множество проблем, если оставлять ситуацию без внимания.

Если вы считаете, что у вас сильная энергетика, и вы энергетически чувствительны, есть ряд вещей, которые вы можете делать, чтобы правильно использовать свой дар и не так сильно истощаться.

Прежде всего, первое, что может вам помочь усилить свои вибрационные “приёмники” или лучше чувствовать вибрацию окружающей среды – это медитация или йога для умственного и физического подъёма. Также рекомендуется регулярно очищать от хлама свой дом и рабочее пространство.

Помните о людях, которыми вы себя окружаете, держитесь подальше от токсичных индивидуумов, событий и обстоятельств, особенно когда чувствуете себя разбитым

Очень важно работать над самопринятием и научиться любить себя и свой дар

Если вы пришли в этот мир как человек, чувствительный к восприятию энергии, то на вас автоматически ложатся некоторые обязанности. Однако, постоянный приток энергии из окружающей среды может подавлять вас и причинять боль.

Но если вы научитесь управлять своим даром, то начнут происходить удивительные вещи. Считывание энергии с людей и умение сопереживать другим будут огромным преимуществом.

Энергочувствительные люди обладают силой, способной толкать мир на положительные перемены, а также у них есть способности, чтобы стать величайшими мировыми лидерами, целителями и учителями.

Теперь давайте рассмотрим какие виды энергетики людей существуют сегодня.

В чем измеряется электрическая мощность

Мощность — это энергия за единицу времени. Единица СИ для мощности — это ватт (Вт), который равен джоулю в секунду (Дж/с), при этом джоуль — единица СИ для энергии, а секунда — единица СИ для времени.

Единицы мощности

Умножение киловатта на час дает киловатт-час (кВт • ч), единицу, часто используемую электроэнергетическими компаниями для представления количества электрической энергии, произведенной или предоставленной потребителям. Аналогичным образом энергоемкость батарей нужно измерять в единицах ампер-часов (А-ч) или для переносных батарей в миллиамперах-часах (мА-ч).

В единицах СИ ватт имеет обозначение W. Имя сохранилось в знак признания Джеймса Уатта, который ввел термин «лошадиная сила» — старая единица мощности.

Единицы преобразования энергии:

  • Лошадиные силы (HP) — 746 Вт;
  • килоВатты (кВт) — 1×1000 Вт;
  • мегаватты (МВт) −1×1000000 Вт;
  • гигаватт (ГВт) — 1×1000000000 Вт.

Ядерная энергетика


Через 

Когда ядро ​​атома разбивается, ядерная энергия высвобождается.

Ядерная энергия – это форма потенциальной энергии, которая накапливается в ядре атома и происходит от сил, удерживающих субатомные частицы вместе. Ядерная реакция похожа на химическую реакцию, в которой реагенты превращаются в продукты. Они отличаются тем, что в ядерной реакции один атом превращается в другой.

Существует три типа ядерной реакции: радиоактивный распад, слияние и деление. При радиоактивном распаде ядро ​​радиоактивного атома самопроизвольно выделяет энергию. При делении ядра ядро ​​бомбардируется нейтроном, что приводит к образованию двух новых атомов. При ядерном синтезе легкие ядра объединяются в тяжелые ядра.

Использование ядерной энергии

Реакции ядерного деления используются в ядерных реакторах, где ядерная энергия преобразуется в тепловую энергию, которая затем преобразуется в электрическую энергию. Энергия, исходящая от Солнца, является продуктом ядерного синтеза.

Оцените статью
Добавить комментарий